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NATIONAL ADVISORY COMMITTEE FOE AERONAUTICS 

TECHNICAL NOTE No. I78O 

CHARTS FOR THE CONICAL PART OF THE 

DOWNWASH FIELD OF SWEPT WINGS 

AT SUPERSONIC SPEEDS 

By Jack N. Nielsen and Edward W. Perkins 

SUMMARY 

Analytical expressions have "been derived for the downwash 
throughout the entire induced flow field of lifting triangles of 
infinite chord with leading edges either in front of or behind the 
Mach cone. These expressions have "been determined from the line- 
pressure source theory of R. T. Jones and the lifting-triangle 
investigation"of H. J. Stewart. Based on these analytical results, 
downwash charts have "been prepared from which the downwash field 
may he determined for any practical combination of leading-edge sweep 
angle and flight Mach number. These charts for the lifting triangle 
of infinite chord are basic to the solution for the downwash field 
of any finite swept wing wherein the contributions of the tips and 
the trailing edges are to be determined by the method of lift can- 
cellation as employed by Lagerstrom and others. The conical part 
of the downwash is obtained from the charts, and the nonconical 
part must be obtained by other means such as the lift-cancellation 
method. 

INTRODUCTION 

One of the principal requirements for a rational analysis of 
the longitudinal stability of aircraft is a knowledge of the down- 
wash field behind lifting surfaces.  Theoretical methods based on 
lifting-line theory for determining downwash for conventional lifting 
surfaces at subsonic speeds are well known. However, before satis- 
factory agreement between experiment and theory was obtained, the 
theoretical downwash had to be corrected for the local effects of 
the wake and the vertical displacement of the trailing vortex sheet 
(e.g., reference l). The methods of reference 1 are applicable to 
conventional airplanes throughout the subcritical speed range by 
use of the Glauert^randtl rule (reference 2). No practical method 
exists at present for the calculation of downwash in the supercritical 
speed range. 
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Several methods "based on solutions of the linearized differ- 
ential equation of compressible flow are available for determining 
the theoretical downwash at supersonic speedB. By the use of the 
conical flow theory of Busemann (reference 3), Lagerstrom in refer- 
ence k  has developed analytical expressions for the downwash field 
of certain uniformly loaded lifting surfaces. By superposition of 
these lifting surfaces, Lagerstrom has determined the downwash field 
of a flat rectangular wing and a flat trapezoidal wing. In addition 
he has indicated a method for determining the effect on the downwash 
field of adding a trailing edge to a lifting triangle of infinite 
chord to form a finite wing. Heaslet and Lomax (reference 5) have 
determined the downwash for points along the intersection of the . 
chord plane with the vertical plane of symmetry "behind a finite tri- 
angular wing with subsonic leading edges. They have also determined 
an approximate solution for the downwash in the vicinity of this line 
at an infinite distance behind the wing. The Schlicting vortex theory 
can be used to calculate the downwash induced by various span load 
distributions. The concepts employed are analogous to the Prandtl 
lifting—line theory and as such consider only the spanwise lift 
distribution and hence neglect any possible effects of chordwise lift 
distribution. 

No determination has been made of the downwash throughout the 
induced flow field of a swept wing In supersonic flow. The solution 
for the downwash field for a lifting triangle of infinite chord is 
basic to the solution for the downwash field of any finite swept 
wing wherein the contribution of the tips and the trailing edge are 
to be determined by the method of lift cancellation as employed by 
Lagerstrom in reference 4. For a finite swept wing, the conical 
downwash field of the lifting triangle of infinite chord represents 
the entire downwash field except for the regions of influence of 
the tips and trailing edge. Within these regions, it represents 
an appreciahle contribution to the downwash. 

The purpose of the present investigation was to determine 
analytical expressions for the downwash throughout the entire induced 
flow field for flat lifting triangles of infinite chord with either 
subsonic or supersonic leading edges. These expressions are used in 
the construction of nondimensional downwash charts, which, when used 
in conjunction with the lift-cancellation method, provide a practical 
means of determining the downwash field for finite swept wings. Although 
the analysis was carried out for MQ

2
 = 2, the charts are presented 

in a form making them applicable to any supersonic Mach number. The 
charts are subject to the usual limitations of linear theory. 
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SYMBOLS 

Primary Symbols 

a angle of attack 

r.p.        real part of a complex function 

V0 free—stream velocity 

MQ free—stream Mach number 

m cotangent of the sweep angle of the wing leading edge 

Idzl 
I5^        slope of the surface of the wedge section in the 

8treamwise direction 

x>7>z longitudinal, lateral, and normal coordinates with the 
origin at the apex and the z = 0 plane coincident 
with the chord plane of the wing. (The positive 
directions are indicated in fig. 1-) • 

x»,yf,z'    oblique coordinates, x' = x-my, y» = y-mx, z* « z //l-m2 

q> potential of the perturbation velocities 

u,v,w       perturbation velocities in x-, y-, and z-directions, 
respectively 

W downwash function (w + iw) 

w harmonic conjugate of w 

(; complex variable (seie) 

V(y/x)2-Kz/x)2 

i+Vi-(yA)2-{z/x)2 

-(Z/x)J 
so 

/l-n/l-ma 

J 1+Jl-HL2 

downwash angle (-w/vo) 
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E(/vG£)    complete elliptic integral of the second kind with 

modulus vl—m2 

I ^        complex variables 

T{i,*JhZ?)    incomplete elliptic integral of the first kind with 

modulus /y/l-So4 and stae «""P11*^ * 

i Vi-*2Vi-u-*o4)^J 

E(i, V^o*) incomplete elliptic integral of the second kind with 

modulus A/I-*O* ^ 8ine a^11*^6 6 

as rrViiiVli2 

4)    Vi-«: 

C constant of integration 

real part of a complex variable 

6 imaginary part of a complex variable 

real part of the incomplete elliptic integral of the 
first kind 

imaginary part of the incomplete elliptic integral of 

T 

F rr 

F 1 the first kind 

Er 

E 

real part of the incomplete elliptic integral of the 
second kind 

imaginary part of the incomplete elliptic integral of 
the second kind 

k modulus of elliptic integrals (yl-So4) 

k« 

sn 

en 

comodulus of elliptic integrals (yi-k2) 

Jacohian sine amplitude elliptic function 

JacoMan cosine amplitude elliptic function 
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dn Jacobian delta amplitude elliptic function 

^X sn(Fr,k) 

»Ja sn(Fi,k«) 

\i incomplete elliptic integral of first kind of sine 
amplitude | and modulus k 

Subscripts 

P value at point P 

Q value at point Q 

c value at Mach cone 

wc value between plane wave and Mach cone 

i refers to complex variable £ 

2 refers to complex variable t\ 

r refers to real part of a complex variable 

i refers to imaginary part of a complex variable 

LIFTING TRIANGLE OF INFINITE CHORD WITH 
SUPERSONIC LEADING EDGES 

In the theory of supersonic conical flow, the downwash field of 
a flat lifting triangle is symmetrical about both the chord plane and 
the vertical plane of symmetry. The downwash field above or below the 
flat lifting triangle at angle of attack a is the same as the down- 
wash field below a nonlifting triangular wing of the same plan form 
with a streamwise wedge-shaped section of half angle a, since the 
flows above and below the wings are independent.  (See fig. 1.) The 
downwash field for this nonlifting triangular wing may be determined 
from its streamwise perturbation velocity field which may be obtained 
from the results presented by R. T. Jones in reference 6. The stream- 
wise perturbation velocity field, or the u—field, for the nonlifting 
triangular wing is the sum of the u—fields for two line pressure 
sources coincident with its leading edges. Similarly, the downwash 
field for the wing is the sum of the downwash fields for the two line 
pressure sources. However, since the downwash field for one line 
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source is the reflection in the xz-plane of the downwash field for 
the other line source, it is sufficient to determine an expression 
for the downwash of a single line source. The complete downwash field 
is then determined as the sum of the field given "by this expression 
and the field given by this same expression with the sign of the 
lateral dimension reversed. 

R. T. Jones in reference 6 gives the following equation for the 
perturbation velocity u at any given point in the field for a line 
pressure source in front of the Mach cone. 

/   = u = _ r.p. la » m  COö-^T-äU) (1) 

In this equation |dz/dx| is equal to a as previously discussed. 
It should also he pointed out that the positive root of the radical 

Vy'2 + z'2 should he used in conjunction with the principal value 
of the inverse cosine.  In the succeeding analysis, the downwash 
field for the upper surface of the nonlifting wing will he determined. 
However, since the downwash, field for this wing is antisymmetric ahout 
the chord plane, it will he necessary to reverse the sign o£che 
result for application to the upper surface of the lifting triangle. 

The perturbation potential cp  at any point P may he evaluated 
as the line integral of u along the line parallel to the x-axis 
through the point P. 

9 = / udx (2) 

for which the lower limit xi     corresponds to a point outside the 
region of influence of the line source where the values of 9  and u 
are zero.  The region of influence of the line source is hounded by 
the Mach cone and the plane waves from the line source tangent to the 
Mach cone.  (See fig. 1.) Figure 2 shows two possible paths of integration 
for equation (2).  The path corresponding to point P of this figure 
intersects only the Mach cone; whereas the path corresponding to point 
Q intersects both the plane wave (y,2+z'2 = 0) and the Mach cone 
(x2 = y2+7.2). Consider first point P:  The perturbation potential 

is given by 

9p = A  udx (3) 
y2+z2 ■A 
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The vertical Telocity component is obtained "by differentiation 
of «p-n. Thus <Pp 

dqpp_ px        du. --—£_ I- w 
Vy2+z2 

since at the lower limit u = 0 in accordance with equation (l). 

In considering point Q, it is convenient to evaluate equation 

(2) in several steps: first through the plane wave, then from the 
plane wave to the Mach cone, and finally from the Mach cone to the 
point Q. In passing through the tangent plane, the value of the 
term cos~1(x,/'\/y^+z»2) in equation (l) jumps from 0 to it; thus, 
the discontinuity in u is finite, and there is no discontinuity 
in cp. Hence, the lower limit of the integrals may be taken as the 

,        ZfJrcß—1 
value of   x    at the plane wave,    y/m +  .    Between the plane 

m   
wave and the Mach cone the value of u is constant at — V0ma/^Jm2—! 
so that within this region the potential is 

— + 
m    m 

öcp 

dz 
*wc = T- - Voa (6) 

This equation shows that the vertical velocity is constant in the 
whole region between the plane wave and the Mach oone. 

When the integration is carried from the Mach cone to point Q, 
it is noted from equation (5) that the potential at the Mach cone is 

«.--ffe^-S-'^) (7) 

and therefore the potential at point Q is 

,Q:ä(^-^*ä) j*   ^   m 
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Differentiating to obtain the vertical velocity 

wQ = V0a + x ^idx 
(9) 

t/jZ+Z 

Equations (k)  and (9) give the value of the vertical velocity at 
points P and Q. Although both equations contain the same integral, 
the actual value of the integral will depend on the path of integration. 
The integral is evaluated in Appendix A for each path; thus, for 

point P 

|üdx = l£ cos-i 
dz     * 

yy'+z2 

VF^jä ^y.a+zis 
(10) 

du .   Yoa „,-1 ( — dx =   cos  I 
2 dz     «      ^ 

yy'+z£ 

>J7^Jrz^ 
- Vna (11) 

If the values of the integral given by equations (10) and (11) are 
substituted into equations (k)  and(9), respectively, «£**«* 

r^ts 

for the vertical velocities at points P and Q are obtained. Thus 

V0a Wp = WQ = -3- cos-i 
'*   +   Z2      \ 

~2   »/v'a+z'S / 
yy    

VyäTP" Vy,2+z' 
(12) 

Equation (12) represents the vertical velocity due to one line- 
pressure source. The vertical velocity due to both pressure sources 
is obtained by adding to this result the contribution of the other 
pressure source which is determined by substituting -y for y in 
equation (12). In accordance with previous considerations, the 
vertical velocity for the triangular lifting wing is of opposite sign 
to the vertical velocity due to the two pressure sources, thus 

voa f  -1 = — J cos-1 
y(y-mx)+zJ 

.yyi7PV(y-mx)2 -z2 (m2-!) J 

+ cos- 
y(y+mx)+z2 

-4W+& V(y+mx)z -*2 (^-iJ J 

(13) 
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LIFTING TRIANGLE OF INFINITE CHORD WITH 
SUBSONIC LEADING EDGES 

The lift of a flat triangular wing with leading edges swept behind 
the Mach cone has "been treated theoretically by H. J. Stewart in refer- 
ence T.  In that paper a differential equation is derived for the 
complex downwash function, the real part of which is the vertical 
velocity.  To determine the vertical velocity w, it is necessary to 
integrate the differential equation and determine the real part of 
the solution. 

In the notation of this paper, Stewart's differential equation iB 

— -   2V°a (1+U2  

nE(Vrf) (^+s0^)
3/2^2

+-l^
3/2 

The actual integration of this equation is accomplished in 
Appendix B, from which it is found that 

W = w+iw =  Jto2   [(l+2s02)  F(5,Vl^7) 
mE(Vl-m2)  (l+s0

2f 

+ E(£,A/1-SO
4
)  + F(TJ,VI-SO

4
) ~E(TI, *Jl^)] + C (15) 

In this equation,  the complex variables    £    and    T\    are related to 
y/x    and    z/x    by the following equations: 

f    = (y/x) + i   (z/x) 

~i+Vi-(y/*)2-(z/*)2 (l6) 

6 =     ,J     2 (17) 

T|   =        , (18) 
Vl+8o2^ 

The value of the constant C may be determined from the boundary 
condition that w = —7Qa on the wing. 
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The vertical velocity w is the real part of the downwash 
function W in equation (15). Thus, it is necessary to determine 
the real part of the elliptic integrals appearing in the equation. 
The methods used to obtain the real part of the incomplete elliptic 
integrals of the first and second kinds are described in Appendixes C 
and D, respectively. Using the results of these appendixes, the 
final expression for the vertical velocity is 

2V0as0 
w = 

2\2 
mE(Vl-m2) (l+s0

2) 
i(l+2s0

2) F(iAi, Vl-so4) 

_  . _.  (l-^o4) (WXiU-Xi) [l-(l-flo4M 

+ F(VH, Vl~so4) - E(V^2, Vl-so4) 

(l-s0
4) a2^/X2  (1-X2) [l-(l-s0

4)M j (19) 

l-ff2 [l-(l-s0
4)^23       ^ 

On the basis of conical flow considerations, the vertical velocity 
is constant along rays through the apex of the lifting triangle and 
thus depends only on y/x and z/x.  In order to determine the vertical 
velocity for a ray defined by y/x and z/x, the real and imaginary 
parts of i   and r\    must be determined in accordance with equations 
(16), (IT), and (18). From TX and bx,  the real and imaginary parts of 
I, the values of ax    and \x    are obtained using equations (C12) and 
(C13). Similarly, values of ff2 and \2 are calculated for the 
complex variable i\    using these same equations. The vertical velocity 
w for the ray defined by y/x and z/x is then determined from 
equation (19) using these values of alf  Xi, a2, and \2. 

EESD1TS AND DISCUSSION 

Downwash Charts 

The equations presented in this report permit determination of 
the downwash at any point in the induced flow fields of lifting 
triangles of infinite chord. The equations have been used to determine 
downwash charts for a number of such surfaces. The range of leading- 
edge sweep angle used in the calculation is sufficient to include 
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all practical configurations, and the number of lifting surfaces for 
which the charts hare "been determined is sufficient to permit inter- 
polation. The charts are presented in figures 3(a) to 3(h) and show 
lines of oonstant de/da within the Mach cone in a plane perpendicular 
to the flight direction. Since the downwash field is conical, the 
downwash pattern is similar in all planes perpendicular to the flight 
direction. Only one quadrant of the Mach cone is shown since the 
downwash pattern is symmetrical with respect to both the horizontal 
and vertical planes of symmetry. 

In determining the charts for the various lifting triangles, 
the values of de/da were calculated at a number of points in the 
Mach cone for Mo =^.    The lines of constant de/da were then 
determined from cross plots. Although the calculations have been 
made for M« = //2, in which case de/da depends only on m, 
y/x, and z/x, it can be shown by the Glauert-Prandtl rule that 
de/da for any Mach number depends only on m VMo -1* (j^/uo^-l)/x, 
and (Z-V/MQ -l)/x. These parameters have been utili?ed in the charts 
of figure 3 so that the results are applicable at Mach numbers other 
thanv2. 

In determining the value of de/da at any point in the field 
for a given finite swept wing, the value of de/da for the 
corresponding lifting triangle of infinite chord is first determined 
from figure 3. If the point in question is not within the region 
influenced by the trailing edge or the tips, this value will represent 
the total de/da. However, if the point lies within the region of 
influence of the trailing edge or tips, the value determined from 
figure 3 represents only part of the actual value of de/da. For a 
finite lifting triangle, the remaining part, which consists of the 
contribution to the downwash of the trailing edge, can be determined 
by the method of Xagerstrom (reference k).  In the more general case 
of a finite swept wing, it is necessary to take account of the sweep 
angle of the trailing edge and the effect of the tips by a similar 
method of lift cancellation. 

Variation of Downwash Distribution With 
Leading-Edge Sweep Angle 

tion 2\hi°H °f flSTe I  8hOW th6 Change8 ln the iovnwash distribu- 
te *yl M I      6eP aDgle °f the leadln« ed«e ia increased with respect 
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the chord plane. Between the Mach cone and the plane waves from the 
leading edges, which are tangent to the Mach cone, the value of de/da 
is constant and equal to unity. The surfaces of constant downwash 
intersect at the lines of tangency of the plane waves and the Mach 
cone. As the sweep of the leading edge is increased (m^Mo -1 
decreases), the line of tangency moves along the Mach cone toward 
the chord plane and the rate of change of de/da with distance from 
the chord plane increases. When m^/Mo2-! approaches 1, the lines 
of tangency and the leading edge approach coincidence on the Mach 
cone; and when m^Mo2-! is equal to 1, the surfaces of constant 
downwash intersect on this line of coincidence. 

When the leading edge becomes subsonio, there are two qualitative 
changes in the downwash pattern. First, the surfaces of constant 
downwash intersect at the leading edges rather than at the lines of 
tangency, which no longer exist; second, a region of upwash occurs 
between the Mach cone and the leading edge. This region of upwash 
increases in extent as the sweep of the leading edge increases. In 
addition, the rate of change of de/da with distance above or below 
the lifting surface increases rapidly, and the downwash near the 
surface of the Mach cone becomes very small. In the limit, as the 
direction of the 3 aading edge coincides with the free-stream direction, 
the downwash field disappears. 

Additional Factors Affecting 
the Downwash 

When the charts of this report are used in conjunction with the 
lift-cancellation method to obtain the downwash behind finite swept 
wings, certain factors which have not been discussed thus far must 
be considered.  In the linearized theory of supersonic flow the 
assumption is made that the trailing vortex sheet is coincident with 
the extended chord plane. This assumption, although valid for very 
small angles of attack, will probably cause an appreciable error at 
large angles of attack for which the trailing vortex sheet is dis- 
placed from the extended chord plane due to the action of the downwash. 
An additional effect, which is important in the immediate vicinity of 
the wake boundaries, is inflow to the wake resulting from the viscous 
properties of the fluid. The influence on the downwash at subsonic 
speeds of these two factors has been investigated and methods for 
predicting their influence have been reported in reference 1. However, 
sufficient experimental data are not yet available to permit the 
development of similar methods for supersonio flow. 

Another factor that is neglected by the linear theory is the 
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curling up of the vortex sheet behind the win« tltja      Thi« Bffo- ,„ 
neglected in subsonic flow calculations for cfnven^onS hi^spect 
ratio wings.    However, for the low-aspect-ratio wings which wm 

Ames Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Moffett Field, Calif. 

APPENDIX A 

EVALUATION OF INTEGRAL IN EQUATIONS (k)  AND (9) 

The integral to he evaluated is 

1 = r  (£) dx (Al) 

in which 

u = — r.p. 
T0a 

-JL. cos-x (       '*'  \ (A2) 

The value of du/dz is determined from equation (A2) and substituted 
into equation (Al), vith_the quantities x», y', and z« replaced by 
x-my, j-ax,    and Z/^l-m?, respectively. Thus 

= I°S £-/: (x-my) dx 

Vy2+z2 

From the identity 

[(y-**)2-^*2-!)] V^-y2-^2 
(A3) 

x-my 

(yHDx)2-z2(m2-l)  2mzVm2-l 

yj(mg-l )-g Vm2-! _ y(m2-l)+Z/ym2-l 

- y+z /y/m2—l-~-mx    y—z ^/m2—1—mx 

(A4) 

the integration can be accomplished by separating the integral into 
two parts. Thus 
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T -L£ x " 2« 

— tan-x 

tan-1 m(y2+z2)-x(y+z Vmg-ll 

L(yVm2-i-z) V^2-y2-z2 

m( y2+z2 )-x(y-z Jm2-!)    1 \X 

-(yV^l+z)   ./is-ys-z2 J 7pTz2 
(A5) 

Before substituting the limits, it is convenient to replace the 
inverse-tangent difference by the equivalent inverse cosine. 

I=I££fcos-i 
y(y-mx) + z2  

Vy2+z2 V(y-^ni)2-z2(m2-l) _ 
(A6) 

„/y2+z2 

In this equation the positive roots of the radicals are to he used 
together with the principal values of the inverse cosine. At the 
lower limit where 

x2 = y2+z2 

and 

(x-*ny)2 = (y-mx)2- z2(m2-l) 

the principal value of the inverse cosine is zero for y<x/m and 
f for T>x/mT It can be shown from figure 2 that y<x/m corresponds 

to point P and y >x/m corresponds to point Q. 

Therefore, for point P 

vV2+z2 

and for point Q 

öu ^ = l£ cosV     _gl+g>= 
öz * \ Vy2+z2   Vy,2+Z'2 

(A7) 

L 
-s/W+Z* 

^dx=^ 
öz * 

/      yy'   + z2 

cos—1!-   
<^Jj2+z2 Vy'2+z'2 

—jt (A8) 

APPENDIX B 

INTEGRATION OF STEWART'S DIFPEEENTIAL EQUATION 

In determining W from Stewart's differential equation 
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aw _  270g 
2\2 (i+r) 

"372 

15 

(Bl) 

it is convenient to express the downwash function as the sum of three 
integrals 

W = 
2Y0a s0

£ 
1-Sn4 

mE( Vl-ffl2)(l-e04)L s0
2   J   VC2+so2   VC2so2+l 

4£ 

+(l-^o2)2J *L de (1-Bo2)2   

(C2+8o2) 3/a VP^77l s0
2      J (£2s0

2
+l) 3'2 ^^^ 

(B2) 

Introducing the change of independent variable 

i = 
^2+3o£ 

the first two integrals "become 

r       *i 
t^w^7^2s0

2
+i 

= F(|,Vl-eo*) 

(B3) 

(B4) 

a£ VW 
(^2+s0

2)3/2 /^V^      *o2 Vl-(l-So2)l2 

(l-s0
4) s0

2(l-s0  ) 

(B5) 

Making use of the transformation" 

T] = 

Vl+s0
2^ 

(B6) 
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the third integral becomes 

T[gdT] 

a£s0? + i)3/2Vt2 + s0
2 "   J Vi-nVi-^d-^) 

(1 - s0
4) 

EUJV
1
 - so4) -F(n,Vi - ßo4) 

(B7) 

Substituting these results into equation (B2) the equation for the 
downwash function "becomes 

W = v+iw = 
2V0aSo 

mE( Vlr-m2) (l+s0
2): 

(l+2s0
2) F(|,Vl"^o4) 

+ E( |, Vl-«o4) + F(T!,Vl-«o4) -E(TJ,'V^-S0
4
) + C (B8) 

The constant C is to he chosen so that v, the real part of W, 
is zero on the Mach cone. 

APPENDIX C 

DETERMINATION OF THE REAL PART OF THE INCOMPLETE 
ELLIPTIC INTEGRAL OF THE FIRST KIND 

The JacoMan normal form of the incomplete elliptic integral 
of the first kind in the complex plane is determined as follows: 

,T+i6 
F( T + i8 

^o   A/I-|2A/1- eji-^ 
(Cl) 

In determining the real and imaginary parts Fr and F±    of this 
integral, it is convenient to introduce* the Jacobian sine amplitude 

elliptic function, 

18 (C2) sn (Fr + iF-^k) = T + 
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Making use of the addition formula for the sine amplitude function 

sn(F +iF- k) = sn(FrA)cn(iFi,k)dn(iFi,k)+sn(iF1,k)cn(Fr,k)dn(Fr,k) 
l-k2sn2(Fr,k)sn

2(iFi,k) 

(C3) 

Substituting the following relationships 

sntiF^k) - 1 S^;) 

cntiF^k) = 
c^F^k«) > ((*) 

^»-=fw 
equation (C3) becomes 

3n(Fr+iFi,k) = 
sn(Fr^)dn(Fi,k')+i sn(Fj,k» )cn(Fj,k' )cn(Fr,k)dn(Fr,k) 

cn^F^k' )+k2sn2(Fr,k)sn2(Fi,k») 

Separating equation (C5) into its real and imaginary parts 

T = 
sn(Fr,k)dn(F1,k') 

cn2(F1,k')+k2sn2(Fr,k)sn2(Fi,k') 

B = s^F^k» )cn(F1,k' )cn(Fr,k)dn(Fr,k) 
cn2(F1,k«)+k2sn2(Fr,k)sn2(F1,k') 

(C5) 

(C6) 

(C7) 

Introducing the substitutions 

X =  sn2(Fr,k) 

a  = sn2(Fi,k») 

and making use of the identities 

(C8) 

(C9) 
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cn(Fr,k) =\/l-k 

dn(Fr,k) = v/i-k2^ 

cn(Fi,k') = s/T^c 

dn(Fi,k') = v/l-k'2(T 

equations (C6) and (C7) "become 

Tg _   X(l-k'2g) (C10) 
(l-a+k^cx)2 

82 = g(i-<x) (1-*) (l-k2*.) (C11) 

(l-cx+k2^)2 

Simultaneous solution of these equations yields 

.   _ [(l-H-2+52) -y(l-Hr2+62)2 -IT2
]   jl+k2(T2

+52) ->^/fl+kg(T2-^g)] 2 - 4k2 

X   = 4k*T2 

]l+k2(T2+52)   -NAl+k2(T2-^2)]2  -  4k2  T~j 

(C12) 

(T
2

+B
2_X)   _ [Xk2(T2

+S2)   - 1] 

Therefore, to find the real and imaginary parts Fr and ¥±,    of 
the incomplete elliptic integral of which the sine amplitude is T+i5, 
it is first necessary to determine \    and a    from equations (C12) and 
(C13). Then from equations (C8) and (C9), it follows that 

Fr = F(v/X,k) (C14) 

F± = F^k») (C15) 
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APPENDIX D 

DETERMINATION OF THE REAL PART OF THE INCOMPLETE 
ELLIPTIC INTEGRAL OF THE SECOND £EHD 

The Jacobian normal form of the incomplete elliptic integral 
of the second kind in the complex plane is given as follows: 

T+iS 1 — 

E(T+i6,k) ^ f      *SJ- dl (Dl) 

In determining the real and imaginary parts Er and ~K±    of 
this integral, it is convenient to introduce the transformation 

I = sn(u,k) = snCuy+iu-pk) (D2) 

where the real and imaginary parts of |i are ur and ui, respec- 
tively. With this transformation equation (Dl) "becomes 

Fr+iFi 

E(r+iS,k) = /     dn2(u,k)du (D3) 

where the upper limit 
T+i5 

Fr+iFi = /      dl ^ (Vk) 

is evaluated in accordance with the methods of Appendix C. 

In integrating equation (D3) it is convenient to perform the 
integration in two steps. The first integration is along the real 
axis to Fr, and the second integration is along a line parallel to 
the imaginary axis from u = Fr to u = Fr+iF^. Thus equation (D3) 
hecomes 

Fr Fi 

E(x+i5,k) =/ dn2(ur,k)dur+i /  dn2(Fr+iui,k)dui (D5) 
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Er - E(^,k) + ^J^J^  g (BIO) 

Thus the real part of the incomplete elliptic integral of the 
second kind of sine amplitude T+iS is obtained by evaluating X 
and a   from equations (C12) and (C13) and substituting these values 
into equation (DIO). 
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Figure  3.— Continued 
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Figure 3.— Continued 
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Figure   3.— Continued 
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